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Multiband description of the optical properties of zincblende nitride quantum dots
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We use the single-particle energies and wave functions calculated from an effective bond-orbital model and
a microscopic empirical tight-binding model in combination with the configuration-interaction scheme to
calculate the optical properties of cubic GaN/AIN quantum dots. Special attention is paid to the possible
influence of the weak spin-orbit coupling on the optical spectra. The results are compared to recent experi-
mental data. In agreement with the experiments, we find a strong polarization anisotropy of the excitonic
transitions in the microscopic empirical tight-binding model, while the effective bond-orbital model misses this
anisotropy in the absence of a piezoelectric field and an atomistic strain field. This missing anisotropy can be
attributed to the artificially increased symmetry of the combined system of quantum dot geometry and under-

lying lattice structure.
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I. INTRODUCTION

Wide band gap GaN, among other group-III-nitride-based
semiconductors, have been successfully employed to realize
short-wavelength light-emitting diodes and laser diodes.! Ad-
ditionally, owing to quantum confinement effects, fabrication
and studies of GaN-based quantum dots (QDs) have recently
attracted a great deal of interest for potential applications in
electronic and optoelectronic devices due to their unique
physical properties.>* For instance, the application of QD
structures in laser diodes has been known to lead to lower
threshold currents due to the enhancement of excitonic ef-
fects in low-dimensional systems.* Despite their potential for
optoelectronic applications, the electronic and optical prop-
erties of group-Ill-nitride QDs are still far less known than
those of the more traditional III-V-semiconductor QD sys-
tems.

Self-assembled GaN QDs have been grown mainly in the
hexagonal phase. In comparison to conventional III-V mate-
rials, the wurtzite group-III nitrides exhibit very strong elec-
trostatic built-in fields.>”” These fields arise in part from
spontaneous and in part from strain-induced polarizations
and as a consequence, the optical properties of nitride-based
nanostructures are significantly modified by these contribu-
tions. For instance, the built-in field gives rise to a strong
separation of electron and hole wave functions.®? Conse-
quently, the optical recombination rate in these structures is
drastically reduced.

To overcome these problems, there has been a rapid in-
crease in the studies of nitride-based QD structures grown
along nonpolar directions.'®!> The experimental data on
these systems indicate that the polarization effects can in fact
be reduced.'® However, recent theoretical results also indi-
cate that the growth of nonpolar QDs will still lead to re-
sidual built-in fields.!? Clearly, these fields will need to be
considered when constructing optoelectronic devices.

As discussed in detail by Simon et al.® and Novikov et
al.,’ the direct way to eliminate the built-in field across the
QD structure is to grow zincblende III-nitride-based QDs
along the nonpolar [001] direction. Since these structures
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offer many potential advantages over systems grown in the
wurtzite phase, the interest in nitride-based nanostructures
with a zincblende structure is now strongly increasing. Some
of the advantages are the absence of the strong electrostatic
built-in field across the nanostructure, the higher carrier mo-
bility due to the higher crystallographic symmetry of the
system,”!* the possibility to cleave (100) zincblende systems
on the {110} plane, which is especially interesting for device
applications,”!> and the smaller energy gap in cubic GaN
compared to the wurtzite system, which reduces the required
indium content to obtain green light emission.'* High-quality
self-assembled zincblende GaN/AIN QDs have now been
demonstrated and experimentally investigated.®10-20

In order to investigate the optical properties of these
nanostructures, the single-particle states and energies are of
crucial importance. Therefore, we compare in a first step the
electronic structure of the nanostructure under consideration
calculated from an effective bond-orbital model to those of a
microscopic empirical tight-binding approach. Since we use
the same set of input parameters, the results can be directly
compared. However, the single-particle states and energies
themselves are not observed in the optical measurements. In
the experiments, the optical properties of self-assembled
semiconductor QDs are often analyzed a function of the ex-
citation power and therefore as a function of the number of
electrons and holes in the system.?! To calculate the optical
spectra of these structures, one has to deal with a system of a
few charge carriers in the discrete states of a given confine-
ment potential, where the carriers interact via the Coulomb
interaction. To address this problem, different theoretical ap-
proaches have been proposed to study the optical properties
of self-assembled QDs, e.g., the Hartree-Fock method?? and
the configuration-interaction (CI) scheme.?>?3 The latter ap-
proach uses the single-particle wave functions of the QD
system to construct the many-particle states.

In this paper, we use the approach presented in Ref. 8 to
combine the single-particle multiband wave functions with
CI calculations for the evaluation of the many-body states.
Since the multiband approaches are using the same set of
input parameters and the Coulomb interaction is treated in
the same way, we are able to compare the results obtained for
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the optical properties of a model QD using the above men-
tioned slightly different approaches. Furthermore, the results
can also be compared to recent experimental data®* as fin-
gerprints of the electronic structure of QDs. Additionally, we
will pay special attention to the possible influence of the
weak spin-orbit coupling on the optical properties, as this
contribution is often neglected in calculations for nitride-
based QDs.3225-29

This paper is organized as follows. In Sec. II, we intro-
duce the main ingredients of our theory for the calculation of
the electronic and optical properties of GaN QDs with a
zincblende structure. These ingredients include the micro-
scopic empirical tight-binding model, an effective bond-
orbital approach, and the evaluation of Coulomb and dipole
matrix elements from the calculated single-particle states.
Section III A deals with the electronic structure of GaN/AIN
QDs, while Sec. III B is dedicated to the excitonic absorption
spectrum and the polarization anisotropy of these systems.

II. THEORY

For a proper treatment of the single-particle states and
energies and therefore the optical properties of semiconduc-
tor QDs, a multiband approach is required.’® To study the
influence of the atomistic structure of the underlying lattice,
we choose here two different models, namely, the effective
bond-orbital model (EBOM) and a microscopic empirical
tight-binding model (ETBM). The general aspects of these
approaches are discussed in detail in Refs. 31 and 32. For the
calculation of Coulomb and dipole matrix elements, we fol-
low here the guidelines given in Ref. 8. We briefly summa-
rize the main ingredients of the subsequently used ap-
proaches in Secs. II A and II B, while Sec. II C introduces
the model QD geometry and deals with the implementation
of the EBOM and ETBM for semiconductor QDs. Section
II D is dedicated to the many-body Hamiltonian for a system
of interacting charge carriers.

A. ETBM

The empirical tight-binding approach enables an atomistic
treatment of a nanostructure, since each site of the underly-
ing lattice is described by a certain number of localized
atomic orbitals. Such an approach provides a simple physical
picture in terms of atomic orbitals and on-site as well as
interatomic matrix elements between these orbitals. Due to
the strong localization of the orbitals at the atomic sites, a
cutoff after a few neighboring shells is well justified.

Here, we apply a tight-binding (TB) model with a sp>
basis set, which implies that each anion is described by three
p orbitals per spin direction while the cation is modeled by a
single s orbital per spin direction. The coupling of the basis
states is restricted to nearest and second-nearest neighbors.
Spin-orbit coupling is taken into account according to Ref.
33. By analytic diagonalization of the bulk TB Hamiltonian
for selected k directions, the electronic dispersion is obtained
as a function of the different TB parameters. Equations for
the TB parameters can be deduced as a function of the Kohn-
Luttinger parameters (7y;, v», 3), the effective electron mass
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m,, the energy gap E,, and the spin-orbit coupling A, at the
Brillouin-zone center. If not indicated otherwise, all param-
eters are taken from Ref. 32. In the framework of this ap-
proach, one TB parameter has to be determined self-
consistently to reproduce the L-point energy of the split-off
valence band. Within this scheme, the band structure around
the I" point is described accurately. The resulting band struc-
ture for GaN is shown in Ref. 32.

B. EBOM

In contrast to the microscopic ETBM approach, the effec-
tive bond-orbital model neglects the atomic basis of the un-
derlying crystal structure. Therefore, in the case of a
zincblende system, the EBOM is based on an effective face-
centered cubic (fcc) lattice, i.e., each anion-cation pair in a
zincblende lattice is treated as a single lattice site. Thus, the
symmetry of the bulk system is changed from T},
(zincblende) to O, (fcc) and the atomic orbitals are replaced
by effective molecular orbitals.

In the framework of the EBOM approach with coupling
up to second-nearest neighbors, the required TB-matrix
elements can be directly related to the input parameters of
the corresponding k-p Hamiltonian.’* Therefore, a self-
consistent fitting procedure is not necessary and the EBOM
matrix elements can be directly calculated from the Kohn-
Luttinger parameters, electron effective mass around the I’
point, etc. By using the parametrization of Ref. 34, the
EBOM approach has another advantage over the scpz ETBM
presented above. In contrast to the stZ ETBM, the applied
EBOM allows for the reproduction of the X-point energies of
the conduction band (X{) as well as the light-hole/heavy-hole
(X%) and split-off energies (X3%). The resulting band structure
from this approach is shown and compared to the ETBM
band structure in detail in Ref. 32. Here, we will briefly
summarize the results.

The EBOM reproduces the bulk valence-band structures
of the materials under consideration throughout the first Bril-
louin zone. The ETBM band structure is in very good agree-
ment with the EBOM results along the I'-L direction, while
slight differences can be observed near the X point. Further-
more, since the EBOM is designed to reproduce the
conduction-band energy at the X point, the EBOM conduc-
tion band exhibits an additional maximum along the I'-X
direction. This maximum is in excellent agreement with re-
sults from ab initio band-structure calculations.’®> The ETBM
conduction-band structure misses this additional feature
since higher conduction bands are not taken into account.
However, since we are dealing with a nanostructure formed
from a direct-band gap material here, the Brillouin-zone cen-
ter is expected to dominate the single-particle states and en-
ergies of the QD. Additionally, owing to the large energetic
separation between the I' point and the X and L points, the
mixing between these states due to quantum confinement
effects is expected to be of minor importance. Indeed, as we
will show later, the calculated single-particle states and en-
ergies from the EBOM and the scpz ETBM are in very good
agreement. Therefore, we conclude that the Brillouin-zone
center dominates the single-particle states in GaN/AIN QDs.
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C. Model GaN quantum dot

High-quality self-assembled zincblende GaN/AIN QDs
have been made available recently.%'%20 Atomic force
microscopy'® and high-resolution electron microscopy'® in-
dicate that these nanostructures are grown as truncated pyra-
mids, nucleating on a wetting layer. Furthermore, these stud-
ies reveal almost no intermixing between Ga and Al in these
structures. Therefore, we assume as a model QD structure a
truncated pyramid of pure GaN with a base length of b
=7 nm and a height of #=1.75 nm oriented along the [001]
direction and embedded in a pure AIN matrix. The nano-
structure resides on a GaN wetting layer with a thickness of
hy;=0.22 nm. A more detailed discussion of the QD geom-
etry in comparison to the experimental data is given in
Ref. 32.

To calculate the electronic structure of the QD under con-
sideration, a sufficiently large supercell is chosen to avoid
numerical artifacts of the supercell boundaries on the bound
single-particle states. The convergence of the eigenstates
with respect to the supercell has been carefully verified.

In the framework of the scpg ETBM, the QD is modeled
on an atomistic level. Therefore, the C,, symmetry of the
underlying zincblende structure is naturally included in this
approach. The parameters for each site are set according to
the occupying atoms (Ga, Al, N) in the GaN/AIN hetero-
structure. At the GaN/AIN interfaces, averages of the TB
parameters are used to take into account that the nitrogen
atoms cannot unambiguously be attributed to the GaN or
AIN material, respectively. The valence-band offset AE, be-
tween GaN and AIN is included in our model by shifting the
diagonal matrix elements of the bulk GaN.

The description of the nanostructure in the EBOM ap-
proach is very similar to the ETBM ansatz. The main differ-
ence here is the use of a slightly more coarse-grained grid
where the anion and cation structure of the underlying
zincblende lattice is not resolved. Therefore, we are left
with a fcc lattice instead of a zincblende structure. Doing so,
the symmetry of the combined system of QD structure plus
underlying lattice is changed from C,, to Cy,,.

Furthermore, since the EBOM does not resolve the atom-
istic structure, the spatial resolution of the confinement po-
tential in the EBOM will be slightly different compared to
the ETBM approach. To take this effect properly into ac-
count, we shift the QD boundaries by half a lattice constant
inwards. Doing so, the EBOM and the ETBM results for the
single-particle energies are in very good agreement as we
will discuss in Sec. III A. From this we can conclude that the
confinement potential introduced in the EBOM is fairly close
to the confinement potential introduced by the ETBM.

Here, our main focus is on a detailed comparison of the
ETBM and the EBOM approaches and the resulting optical
properties of a GaN/AIN QD rather than describing the nano-
structure in all details. Therefore, to investigate the inherent
properties of these approaches, we neglect the contributions
of strain and piezoelectricity. Nevertheless, as discussed in
detail in Ref. 32, the results for the one-particle level struc-
ture are in qualitative agreement with results obtained in Ref.
25, where strain and piezoelectricity are explicitly taken into
account.
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D. Many-body Hamiltonian, Coulomb, and
dipole matrix elements

From the calculated single-particle states, the many-body
Hamiltonian H can be constructed

where Hy= >, €ele;+ >, €hih; (1)
i i

is the one-particle part, which is diagonal with respect to the
calculated QD eigenstates,

1 1
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describes the Coulomb interaction between the carriers, and

Hp= 2 ((¥leoEr|fye;h; + H.c.) (2)

denotes the coupling to an external field E in dipole approxi-
mation, where ¢, denotes the bare electron charge. The cre-
ation and annihilation operators for electrons (holes) in the
single-particle state |/¢) (|#/)) with energy €(€]') are denoted
by el (h!) and e;(h;), respectively. The Coulomb matrix ele-
ments are denoted by Vz,i‘, . According to the discussion of
Ref. 8, the VZ‘/-’,Z} are approximated by

AN Nix o N, Nk W]
Vi => > cR]’;UcR,"ﬁTU,cR,’ﬁ’U,cR’a’UV(R—R’), (3)

R apB
R’ oo’
with
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4mepe, /R -R/|
and
| 2
V(0) = — f Prdr ——L—— <V, (5)
Vet dmepe,r —r'|

Here, the atomic positions are denoted by R. The calculation
of the on-site integral V(0) involves the integration over the
volume of the unit cell V,,. and can be done quasianalytically
by expansion of the Coulomb interaction in terms of spheri-
cal harmonics.® The expansion coefficients ci{a,o are related
to the ith one-particle wave function

wi(r)= E Ci{,a,g(ﬁR,a,o’(r)’ (6)

R,a,0

where ¢, g,(r) denotes the atomic wave functions localized
at the lattice site R, i.e., @ e {s,p,,p,.p.} and o {1, |}, for
a multiband approach taking spin-orbit coupling into ac-
count.

In addition to the Coulomb matrix elements, one has to
calculate the matrix elements d}'=eo(i)f|r[i/}) of the dipole
operator egr using the ETBM and EBOM wave functions
i(r), respectively. This expression gives information on the
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selection rules, allowed and forbidden transitions, and oscil-
lator strengths.3” For the operator r in the dipole Hamil-
tonian, Eq. (2), we use the approximation3’-3°

r=2 |R,a,dR(R,a,0]
R

+E E IR, a,0)R,a,a|F|R’, B,0"XR’, B,
R R’

ao Bo’

(7)

where I denotes the position inside a unit cell relative to R.
With this decomposition of the operator r and the single-
particle wave functions, Eq. (6), the dipole matrix elements
dff:edfjh explicitly read

eh_ iex h
dii =eg > CR M,CIR,,BU
RR’

aBoo’

+(R,a,aler|R’, B,0")], (8)

[eR5RR, 5&[350'0-’

where e denotes the light polarization vector.

The first part in Eq. (8) stems from the expansion coeffi-
cients (“envelope”) weighted with the position of the corre-
sponding atom site. The second part contains the matrix el-
ements of the operator r with the localized (atomic) basis
orbitals ¢,g(r) and is determined by their spatial dependence
inside the unit cell. Following the discussion of Ref. 8, this
orbital part must be calculated using orthogonalized Slater
orbitals. In order to estimate the importance of the orbital
part, we performed the calculation for different light polar-
izations. It turned out that the orbital part, for light polariza-

tions parallel to [110], [110], and [001], respectively, is neg-
ligible compared to the envelope part. Therefore, we neglect
in the following the second part of Eq. (8) and thus the
orbital contribution to the dipole matrix elements.

In analogy to the bulk systems, a separation of the orbital
a and spin part o is prohibited by the spin-orbit coupling.
Additionally, due to band mixing effects, even the total an-
gular momentum is not a good quantum number any more
for the QD single-particle states so that the corresponding
selection rules are no longer applicable. Any treatment of
many-body effects in QDs based on these selection rules will
yield inaccurate predictions of level degeneracies because
the band mixing characteristics of zero-dimensional struc-
tures are ignored. However, the selection rules can always be
analyzed on grounds of symmetry considerations. We point
to Ref. 40 for a detailed discussion on this subject.

An often-discussed quantity in QD systems with a
zincblende structure is the so-called light-polarization aniso-
tropy N. The light-polarization anisotropy is defined as the

ratio of the absorption for light polarized along the [110] and
[110] axes*!

P |<¢‘f|r[110]|‘ﬂ11>|2
Puiop [l D
As discussed in Ref. 41 for InAs QDs, the polarization an-

isotropy A can deviate from unity for three different reasons:
(i) The geometric dimensions of the QD are different along

&)
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TABLE 1. Comparison of level spacings calculated from the
EBOM and the ETBM approaches.

Electrons
EBOM ETBM
Af]"’z (meV) 136.5 128.6
A, e, (MeV) 0 0.2
Holes
EBOM ETBM
Ahl*hz (meV) 5.6 6.2
Ah2*h3 (meV) 6.2 6.0
E, (meV) 3670.9 3688.7

the [110] and [110] directions. (ii)
zincblende structure makes the [110] and [110] directions
inequivalent. (iii) A piezoelectric field breaks the symmetry.
As discussed in Sec. II C, we neglect the piezoelectric field.
Consequently, in a square-based pyramid, where the geomet-
ric factor does not contribute, a continuum-based approach
such as a k-p model or an EBOM approximation neglecting
piezoelectricity produces A=1. This is because these ap-
proaches neglect the atomistic details, except for small asym-
metry effects that are introduced subsequently by an atomis-
tic strain field.** It treats the square-based pyramid as having

The underlying

C,, symmetry and therefore the [110] and [110] directions as
equivalent. For this reason, such an approach can only ac-
count for the geometrical factor. In a fully atomistic ap-
proach, such as a microscopic TB model or a pseudopotential
calculation, both contributions are naturally included. There-
fore, even in a square-based pyramidal QD, one could expect
deviations from unity.

III. ELECTRONIC AND OPTICAL PROPERTIES OF
CUBIC GaN/AIN QUANTUM DOTS

In the following section, we discuss the single-particle
states and energies of the first three bound electron and hole
states of a truncated pyramidal GaN/AIN QD. Section III B
is dedicated to the excitonic absorption spectrum and the
polarization anisotropy in these systems.

A. Single-particle states and energies

The calculated energy splittings A, 5 between the differ-
ent electronic levels are summarized in Table I, while Fig. 1
depicts the QD geometry and the modulus squared of the
electron and hole wave functions for the first three bound
states. Comparing the results of the two approaches, the cal-
culated bound electron and hole states are very similar with
respect to their symmetry properties as well as to their ener-
gies.

As it can be seen from Table I, the ETBM results for the
energy splittings Ae ; of the different shells agree within 8
meV (5.8%) with the correspondmg quantities of the EBOM.
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FIG. 1. (Color online) Isosurfaces of the first three modulus squared electron and hole wave functions for truncated pyramidal GaN/AIN
QD (h=1.75 nm, b=7 nm) calculated with the empirical tight-binding model and the effective bond-orbital model. The light and dark
surfaces correspond to 0.1 and 0.5 of the maximum probability density, respectively.

In case of the hole states, the results agree within 0.6 meV
(10.8%). The single-particle energy gap calculated from the
ETBM matches the EBOM results within 18 meV (0.5%).

While the calculated EBOM and ETBM bulk band struc-
tures are in excellent agreement around the I' point, we find
deviations around the X point.3> Although the lateral dimen-
sion of the QD structure is large, it is very thin (=2 nm)
along the growth direction. Thus, the confined hole and elec-
tron states might include contributions with larger k_, which
result in different energies for these states. Therefore, slight
deviations might arise from this issue.

Looking at the electron wave functions themselves, these
states can be classified according to their nodal structure as
s-like (¢4) and p-like (¢4, ¢4;) wave functions. Since the
EBOM does not resolve the underlying zincblende structure,
an unstrained, square-based (truncated) pyramidal GaN/AIN
QD is modeled with a C4, symmetry. Consequently, the
states ¢4 and ¢4 are degenerate in the EBOM approach and
can be described using linear combinations of the form p .
=(1/ \s’E)(pXi ipy). In a microscopic description such as the
ETBM, the resulting degeneracy is lifted and a splitting oc-
curs as a consequence of the reduction of the Cy4, to a Cy,
zincblende symmetry. This symmetry reduction also gives
rise to a larger splitting of the first two hole states :,Z/f and 1,1/2’
(cf. Table I). This analysis is confirmed by a closer inspec-
tion of these two groups. Since the C,, group is Abelian,
each irreducible representation is one dimensional.** There-
fore, neglecting the spin, each state must be nondegenerate.
In contrast to the C,, group, the group Cy, is non-Abelian. In
this case, we have four one-dimensional representations and
one two-dimensional representation.** In conclusion, one
would expect degenerate states in systems with a Cy, sym-
metry but not in systems with an overall symmetry group of
C,,. Note that this analysis neglects the influence of the spin-
orbit interaction. Taking spin-orbit coupling into account,
one has to consider the double groups, with the same single

group representations and the additional degeneracies due to
time-reversal symmetry.*> In our calculations, the spin-orbit
coupling is included, but it produces no significant effects for
the electron states.

Due to band mixing effects, the hole states cannot be eas-
ily classified according to their nodal structure. Conse-
quently, the selection rules will also be modified since the
band mixing effects prevent a strict classification in terms of
total angular-momentum selection rules. Therefore, the use
of a multiband approach is crucial. In contrast to the EBOM
approach, the first two hole states in the ETBM reveal a

strong spatial anisotropy along the [110] and [110] direc-
tions, respectively. The same is true for the first two excited
electron states ¢4 and ¢4. This anisotropy again reflects the
C,, symmetry of the system under consideration. As dis-
cussed in detail in Ref. 32, the first two hole states are split
by about 6 meV due to the underlying zincblende structure
and the spin-orbit coupling. These two effects will strongly
modify the optical properties of a truncated pyramidal GaN/
AIN QD with a zincblende structure, as we will discuss in
detail in the following section.

B. Excitonic absorption spectra

Starting from the calculated single-particle wave func-
tions, the dipole and Coulomb matrix elements are obtained
following Sec. II D. The calculation of excitonic absorption
spectra in this section can directly be performed starting
from the many-particle Hamiltonian in second quantization
as given in Sec. II D. For the localized states, CI calculations
are performed.?* Since we are only interested here in com-
paring the resulting spectra of the EBOM and the ETBM,
only the first three bound states for electrons and holes are
included in the calculation. The excitonic absorption spectra
are calculated using Fermi’s golden rule. The calculation of
the optical spectra is described in detail in Refs. 23 and 40.
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FIG. 2. (Color online) Excitonic absorption spectrum of a trun-
cated pyramidal GaN for different light polarizations. The EBOM
results without the spin-orbit coupling are shown in (a) while (b)
shows the spectrum when including the spin-orbit coupling. The
excitonic absorption spectrum calculated from the ETBM wave
functions under the influence of the spin-orbit coupling is displayed
in (c). All calculations are performed in the absence of the Coulomb
interaction.

To study the influence of the different contributions in
detail, we proceed in the following way. In a first step, we
neglect the Coulomb interaction between the carriers. Fur-
thermore, to study the possible influence of the weak spin-
orbit coupling, we artificially switch-off this contribution.
The spin-orbit coupling has been commonly neglected in III-
nitride QD systems.®*>-2? Figure 2(a) shows the excitonic
absorption spectra of the EBOM without spin-orbit coupling,
while Fig. 2(b) displays the spectrum in the presence of the
spin-orbit interaction. The excitonic absorption spectrum cal-
culated from the ETBM approach including spin-orbit cou-
pling is shown in Fig. 2(c).

The spectrum of the QD is calculated for different light
polarizations [e ~ (x, =y,0)]. The absorption lines in each
spectrum correspond to the excitation of an exciton in the
QD. Without Coulomb interaction, the two peaks on the low-
energy side correspond to transitions where the electron is in
the ground state ¢ and the hole in the states #/ and /!
(=i of — ), respectively. The two bright lines for the

polarizations [110] and [110] on the high-energy side corre-
spond to the transitions ¢— /! and yf— /..

When comparing the results in the absence [cf. Fig. 2(a)]
and in the presence [cf. Fig. 2(b)] of the spin-orbit coupling,
the transition energies are only slightly affected by this con-
tribution. The ground-state transition without spin-orbit inter-
action matches the result of the calculation including spin-
orbit coupling within 2.2 meV. The main drawback of this
approximation is the introduction of an artificial degeneracy
in the hole spectrum as discussed in the previous section.
Without the spin-orbit coupling, zﬂl' and 1/’2 are degenerate
and therefore the calculation predicts a fourfold degenerate
hole ground state in contrast to a twofold degenerate ground
state when taking spin-orbit coupling into account. A similar
behavior is observed in InN/GaN QDs with a wurtzite
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FIG. 3. (Color online) Excitonic absorption spectrum of a trun-
cated pyramidal GaN for different light polarizations. (a) EBOM
spectrum with Coulomb interaction and spin-orbit coupling. (b)
ETBM spectrum with Coulomb interaction and spin-orbit coupling.

structure.*® Therefore, in the absence of the spin-orbit inter-
action and neglecting the atomistic structure of the underly-
ing crystal lattice, we observe only one peak on the low-
energy side although there should in fact be two lines. Since
the states ¢/ and ¢/ are split by about 6 meV due to the
spin-orbit coupling, these lines are energetically separated by
this value.

When comparing the results from the ETBM and the
EBOM, the overall agreement in the transition energies is
very good, e.g., the ground-state transition agrees within 18
meV. Furthermore, in both approaches, the calculations for
e~(0,0,z) (not shown) reveal that there is a strong aniso-
tropy between the [001] and the in-plane polarization direc-
tions.

In contrast to the EBOM approach, the ETBM predicts an

anisotropy between [110] and [110] directions [cf. Fig. 2(c)].
This anisotropy reflects the C,, symmetry of the single-
particle wave functions in case of the atomistic approach.
The magnitudes of the oscillator strength for the [110] and

[110] directions follow from the orientations of the single-
particle states displayed in Fig. 1. For example, the electron
ground state is nearly isotropic. Due to the underlying
zincblende structure, the hole ground state in the framework

of the ETBM is aligned along the [110] direction. Therefore

the transition ¢ —¢/ is favored by the [110] polarization,
while in case of the EBOM approach, the first two hole states
are fairly symmetric and no polarization anisotropy is ob-
served.

Including the Coulomb interaction (cf. Fig. 3), the absorp-
tion lines shift to lower energies due to the attractive inter-
action between electron and hole. According to the CI calcu-
lation, the two lines on the low-energy side are dominated by
contributions where the electron is in the state ¢{ and the
hole in the states ‘//1' and ¢/, respectively.

The ratios of the dipole matrix elements for light polar-

ized along the [110] and [110] directions are calculated from
Eq. (9). In case of the ¢ — /! transition, we find a polariza-
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tion anisotropy ratio of A=0.54 for this truncated pyramidal
GaN QD. Again, the magnitude of the ratio reflects the ori-
entation of the single-particle states displayed in Fig. 1.

Therefore, even without strain and piezoelectricity, we ob-
serve a strong polarization anisotropy in the framework of a
fully atomistic approach. This result is in strong contrast to
the results of symmetric QDs with a wurtzite structure grown
along the ¢ axis. In such a system, no polarization anisotropy
is observed.*>*” Only if the QD is elongated along one di-
rection, the polarization anisotropy is introduced due to the
shape breaking the symmetry of the x-y plane, but in general
we expect symmetric emission from c-axis QDs. The
strongly linear polarization of the excitonic transitions in cu-
bic GaN/AIN QDs might be of significant potential benefit
for a range of applications, e.g., back lighting liquid crystal
displays.

A strong polarization anisotropy in cubic GaN/AIN QDs
has been measured recently in photoluminescence (PL)
experiments.”* Lagarde et al.?* observed a significant PL lin-
ear polarization (=15%) when the excitation is linearly po-
larized. This is a clear signature of the partial linear polar-

ization of the excitonic transitions along the [110] and [110]
directions. To further confirm the results, the authors have
measured the PL linear polarization as a function of the angle
6 between the linear polarization of the excitation and the

[110] and [110] directions.

To compare our calculations to the experimental data, we
calculate the intensity of the excitonic ground-state transition
as a function of the polarization vector e(6), where 6 denotes
the angle between the polarization vector e and the [110]
axis. As reference, we use the intensity /* of the ground-state
transition with e(#=45°). Therefore, we define the degree of
linear polarization Py, as

F—1(0)

P00+ 1007

(10)

The calculated Py,(6) from the ETBM approach (blue
squares) and the EBOM approach (green diamonds) is
shown in Fig. 4. Due to the C,, symmetry of the combined
system of QD geometry and underlying lattice in the frame-
work of the EBOM, no linear polarization is observed, while
in the ETBM results, the degree of the linear polarization is
given by Py, () occos(26), which is characteristic for a sys-
tem with C,, symmetry.*® Therefore, the ETBM results are
in very good agreement with the experimental data. Further-
more, the analysis of the optical spectra clearly shows the
fingerprints of the electronic structure of the nanostructure.
In conclusion, our investigations reveal that a large part of
the polarization anisotropy A can already be explained by a
square-based (truncated) pyramidal QD without piezoelec-
tricity and an atomistic strain field when using a fully atom-
istic approach. In other words, even without a deformation of
the pyramid, a microscopic approach might yield a distinct
polarization anisotropy A. Therefore, the geometric aniso-
tropy of a QD might not be reliably deduced using k-p cal-
culations to fit the measured polarization anisotropy, as sug-
gested by Yang et al.,* since continuum-based simulations
lack the correct atomistic symmetries. This comparison em-
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FIG. 4. (Color online) Linear polarization as a function of the
angle 6 between the polarization vector e and the [110] direction.
The ETBM result is indicated by the blue squares, while EBOM
result is given by the green diamonds.

phasizes the importance of an atomistic simulation for a de-
tailed description of the optical properties of semiconductor
QDs. Of course, when including additional effects, such as
an atomistic strain field as well as piezoelectricity, the
EBOM will also yield a polarization anisotropy. Further-
more, for large systems, the microscopic structure of the sys-
tem will be of minor significance. For smaller height-to-
base-length ratios, the influence of larger k, might grow, thus
requiring a suitable fit of the bulk band structure throughout
the Brillouin zone. Therefore, the importance of the underly-
ing crystal structure in comparison to other effects (strain,
piezoelectricity) will strongly depend on the system under
consideration and has to be checked carefully.

IV. CONCLUSION

In this paper, we have studied the electronic and the op-
tical properties of truncated pyramidal GaN/AIN QDs with a
zincblende structure. In summary, we have compared the re-
sults of two slightly different tight-binding approaches to
model QDs, namely, the atomistic ETBM and the EBOM,
with a slightly lower, not atomistic but only lattice site res-
olution. Concerning the eigenstates and eigenenergies, the
results obtained within the two methods essentially agree
qualitatively and quantitatively, besides a small energetic
shift. On one hand, small discrepancies between the ETBM
energies and the experimental values for larger k might play
a role. On the other hand, deviations between the micro-
scopic ETBM and the EBOM are found to be related to the
symmetry of the underlying crystal structure which is de-
scribed correctly in the microscopic approach. This symme-
try and the inclusion of the weak spin-orbit coupling leads,
for instance, to a splitting of the p-like electron states and the
first two hole states in case of a truncated pyramidal QD.

Dipole and Coulomb matrix elements have been calcu-
lated from these single-particle wave functions and serve as
an input for configuration-interaction calculations. The
theory has been applied to the evaluation of the excitonic
absorption spectrum. For the calculated transition energies,
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we find a very good agreement between the ETBM and
EBOM results. Furthermore, we have demonstrated that the
inclusion of the spin-orbit coupling is required to avoid arti-
ficial degeneracies in the hole spectrum, especially for the
hole ground state. The EBOM cannot reproduce certain fine
structures, which are obtained within the ETBM, for in-
stance, that the lowest interband transition has a very differ-

ent intensity along the [110] and [110] directions. This an-
isotropy exists even in the absence of strain and
piezoelectricity, reflecting both the underlying C,, symmetry
of the QD system and the band mixing. Such an anisotropy is
absent in the EBOM for square-based pyramidal QDs with a
zincblende structure when neglecting contributions from an
atomistic strain field and piezoelectric contributions, respec-
tively. As the correct symmetry is taken into account in the
ETBM, a polarization anisotropy, which has recently been

PHYSICAL REVIEW B 80, 165405 (2009)

observed experimentally,®* can be reproduced within the
ETBM.
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